Global Decoupling of Crust and Mantle: Implications for Topography, Geoid and Mantle Viscosity on Venus
نویسنده
چکیده
The surface of Venus is so hot that the lower crust may be weak enough to allow decoupling of mantle and crust. An analytic model of such decoupling assumes that the shallow mande forms the top boundary layers of large scale mantle convection cells. Crustal flow is driven by the motion of the marie and by topographically induced pressure gradients. The model predicts that the lowest lowlands are sites of mantle upwelling and thinner than average crust. Highlands are places where mantle downwells and the crust is thick. Surface heat flow is inversely correlated with elevation, consistent with recent estimates of brittle layer thickness variations on Venus. If the average crustal thickness i about 20 km then the average lower crustal viscosity must be close to 1018 Pa s to allow decoupling. The observed amplitude of geoid highs over highlands requires an Earth-like increase in manfie viscosity with depth.
منابع مشابه
The Effects of Dynamic Topography and Thermal Isostasy on the Topogra- Phy and Geoid of Venus
Introduction: The Venusian geoid, gravity field, and topography have been used in a variety of applications and are the primary sources of information about the internal structure of the planet. We focus on the relationship between the geoid and topography to determine both the support mechanism for the topography and lithospheric density structure. Magnitude of Dynamic Topography: The long-wav...
متن کاملThe long-wavelength geoid from three-dimensional spherical models of thermal and thermochemical mantle convection
The Earth’s long-wavelength geoid anomalies have long been used to constrain the dynamics and viscosity structure of the mantle in an isochemical, whole mantle convection model. However, there is strong evidence that the seismically observed large low shear velocity provinces (LLSVPs) in the lower mantle underneath the Pacific and Africa are chemically distinct and likely denser than the ambien...
متن کاملMantle downwelling beneath the Australian-Antarctic discordance zone: evidence from geoid height versus topography
The Austral ian-Antarct ic discordance zone (AAD) is an anomalously deep and rough segment of the Southeast Indian Ridge between 120 ° and 128°E. A large, negative (deeper than predicted) depth anomaly is centered on the discordance, and a geoid low is evident upon removal of a low-order geoid model and the geoid height-age relation. We investigate two models that may explain these anomalies: a...
متن کاملGeological Evidence for Petrogenetic Diversity on Venus: Implications for Future Exploration Strategies
Introduction: A long-standing, fundamental question in planetary geoscience is: "How similar are the geological histories of Earth and Venus, and when and how did their evolution diverge?" Did Venus once have oceans and a more Earth-like climate, as suggested by Pioneer-Venus data [1]? If so, when, how, and why did it transition to current conditions, and are traces of this early period, and th...
متن کاملEffects of lateral viscosity variations on the geoid
[1] We investigate the effects of lateral viscosity variations (LVVs) on mantle circulation model predictions of the global geoid. The present study is motivated in part by earlier findings that LVVs due to stiff slabs in the lower mantle have a strong influence on the geoid, and that slabs in the lower mantle are perhaps no stronger than the ambient mantle. However, more recently, it has been ...
متن کامل